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Abstract

An asymmetric shift in the position of the magnetic Bragg peak with respect to
the fiducial lattice has been observed by resonant x-ray scattering in a diverse
series of antiferromagnetic compounds. A possible explanation is given in
terms of a generalized Berry phase correction.

Since the pioneering work of Shull and collaborators [ 1] neutron diffraction has been the probe
of choice for observing magnetic diffraction peaks and examining the evolution of the magnetic
sub-lattice order on the atomic scale. When the long range order (LRO) in the AF state is of a
different periodicity from that of the underlying chemical lattice, peaks arise at new, previously
forbidden, positions in the diffraction pattern. As a result, in order to preserve Bragg’s Law,
it is necessary to introduce an explicit phase variable, ¢ = Qq - r, into the defining magnetic
order parameter where Qy is the antiferromagnetic wavevector.

In this paper, we detail studies of the magnetic diffraction peaks recorded in a number of
materials which, by neutron diffraction, are known to condense into a state of antiferromagnetic
(AF) order below the Néel temperature, Tn. As a complement to the information accrued by
neutron diffraction, in the following we exploit the potentials of resonant x-ray magnetic
scattering. In particular, the high wavevector resolution and incident flux combined with
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Figure 1. Diffraction data from the (003) AF reflection of USb in the vicinity of 7y at the U My
edge (3.728 keV at XMaS, ESRF). Top scan at T = 214.5 K, next at 215.0 K, then subsequent
scans at intervals of 0.25 K. The lines are Lorentzian squared functions to fit the data; note the
logarithmic scale of intensity. (Any smooth function fitted to the data may be used to quantify the
shift and width as a function of temperature.) Top inset—the integrated intensity of the AF (003)
as a function of temperature. Lower inset—the full-width at half maximum (fwhm) as a function
of temperature.

polarization analysis available at the European Synchrotron Radiation Source, Grenoble
(ESRF), have enabled us to observe a change in effective magnetic periodicity near Ty as
measured by an asymmetric shift in the Bragg wavevector relative to that of the underlying
chemical lattice in a set of thermodynamically diverse materials. Such an effect was, to our
knowledge, first noted in an earlier study of UO, by resonant x-ray scattering at the uranium
M, energy [2], and at about the same time in HoB,Ni,C using photons tuned to the Ho L;
edge [3]. To date no explanation has been advanced for these observations.

We illustrate this effect with data, figure 1, taken by resonant x-ray scattering at the U
M, edge on the XMaS beamline at the ESRFE, on a single crystal of USb. The small, but
significant, shift in wavevector, recorded here at the magnetic (003) specular reflection, lies
comfortably outside the resolution width of the spectrometer, and shows a characteristic drift
to lower values with increasing temperature. USb, in contrast with UO, which undergoes a
discontinuous change of magnetic phase at 30 K [2], exhibits a continuous transition [4] as
demonstrated by the temperature dependence of the antiferromagnetic scattered intensity in
the upper inset and the evolution of the magnetic g-widths plotted in the lower inset of figure 1.
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Figure 2. Wavevector shifts (divided by the low temperature L index) of charge (002) (filled points)
and magnetic (003) (open points) for USb as a function of temperature (error bars ~ size of points).
Inset—normalized magnetic intensity as a function of incident photon energy for 150 K (open) and
216.5 K (solid points). The profiles are identical within experimental error, fwhm ~ 9 eV, despite
an intensity ratio of some three orders of magnitude, indicating that they originate from a common
bulk volume [5] thereby eliminating the possibility that the observed shift, D, is primarily due
to near surface effects.

The normalized shift in wavevector is plotted as a function of temperature in figure 2 together
with that for the charge (002) reflection measured under the same experimental conditions,
i.e. sampling the same absorption and a similar scattering volume. As the figure shows, the
magnetic and charge peaks are commensurate throughout the ordered region (i.e. the two peak
positions scale) despite the large magnetostrictive effects. However, as noted in figure 1, in the
vicinity of Ty there is adecrease in the observed magnetic wavevector occurring in opposition to
the lattice contraction, which continues unabated to a small anomaly around 216 K. In contrast
with the magnetic reflection, no observable changes occur in either the intensity or width of
the charge (002) reflection on passing through 7y, consistent with the magnetic structure being
a 3k arrangement [4] having no crystallographic distortion from cubic symmetry below Ty.

Amongst the series of materials investigated, similar effects are seen, for example, in the
heavy fermion superconductors UPd;Als and URu,Si,. Here, as illustrated in figure 3 for
URu,Si,, the shifts in the magnetic wavevector lie outside the narrow charge peak profiles.
This makes it difficult to propose the idea that a small strained (i.e. with different lattice
parameter) scattering volume near the surface exhibits magnetism. Such scenarios, associated
with possible second-length scales [5, 6], also have the difficulty that the charge and magnetic
peaks in all cases have been measured with photons of the same energy. As noted, the scattering
volumes are thus similar and it is the position of the magnetic with respect to the charge peaks
that shows an anomalous shift as is vividly demonstrated in USb. Furthermore, any theory
invoking strain has to account for the change in the wavevector over a narrow temperature
range.

The inset to figure 2 shows the magnetic intensity as a function of incident photon energy
well below and in the neighbourhood of Ty for USb. Similarly, data are given in the inset of
figure 3 for URu,Si,. If the observed shift in magnetic wavevector were driven by either near
surface effects, or by changes in the density of polarized states near Ty, the width and profile
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Figure 3. Longitudinal scans through the (005) magnetic specular reflection in URu, Si, showing
the shift and broadening of the peak. The highest intensity is with 7 = 10 K, and other profiles
correspond to temperatures as in figure 4 below. Inset—incident photon energy dependence of the
(005) peak at T = 10 K. The wide Lorentzian profile is independent of temperature and signifies
a substantial intermediate state matrix element associated with a strong 5 f polarization whilst the
broad g-vector peak (main frame) gives a measure of the short-range magnetic order.

of the energy dependences would be modified [5]. No changes are seen. Thus the energy
resonances, the independence of effects to the surface preparation and order of the transition
all argue against near surface sensitivity as the underlying cause.

In figure 4 we show the change of the magnetic wavevector, DQ, as a function of
temperature for UO, (top frame), UPd, Al; (middle frame) and URu,Si, (lower frame) together
with that of the lattice parameter. Independent of being metal or insulator, the continuous or
discontinuous nature of the magnetic transition and the magnitude of 7y the similarities across
this heterogeneous set of materials are striking. Thus material specific details such as magnetic
phase heterogeneity near Ty at a discontinuous transition, dielectric or magnetic screening,
or the presence of lattice vibrations are unlikely to be fundamental to understanding this
phenomenon. These conclusions are supported by parity considerations, which eliminate both
the build up of (energy integrated inelastic) thermal diffuse scattering and incommensurate
ordering which would give a pair of symmetrically displaced peaks around each reflection.

Summarizing the experimental situation, two important observations appear generic to
the anomalous shift: (a) DQ is in each case associated with a broadening of the magnetic
diffraction peak and (b) the shift is to smaller wavevector. Independent of details, the crucial
wavevector shift in magnetic scattering of a given volume relative to the charge appears to lie
outside interpretation within conventional diffraction theory.

We commence our appraisal with a brief recapitulation of the conditions necessary for
coherent diffraction. The essential observation is thatlattice periodicity gives rise to momentum
quantization, and hence to discrete Bragg peaks in momentum space. This focus brings out
the fundamental role of the system’s periodic Hamiltonian and boundary conditions in the
formulation of the scattering amplitude from a periodic array. The spatial symmetry both
defines the acceptable state vectors underlying the appropriate Hilbert space and the class
of operators permitted in this space. On scattering, the probe and crystal enter into a joint
state vector, |\V), which is most frequently represented by fragmentation into non-interacting
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Figure 4. Shift, DQ, in the reciprocal lattice position of the magnetic Bragg peak recorded at the
(110) reflection in UO; [2], the (0 0 1.5) reflection in UPd, Alz (both taken at X22C, NSLS, BNL)
and the (005) reflection in URu,Si, (taken at ID20, ESRF), all using photons tuned to the uranium
M, edge at 3.728 keV. The change in the lattice parameter, as measured in the same experiment at
the charge Bragg reflections, is indicated by the broken lines. In UO; the phase transition is known
to be discontinuous [2].

primitive functions of state for the crystal, |¢), and probe, |x), respectively together with a
mandatory interaction (as seen through the cross section and also expressed in the primitive
state vector weighing coefficients) introduced to resurrect at least some of the amplitude—phase
correlations present in |[W). The decomposition may be represented by an entangled state of
generic form, |W) ~ Y. |¢i)|xi), where the sum extends over all Bragg points compatible
with the experimental situation. Bragg’s insight on coherent diffraction phenomena, which
predated the quantum picture, may be restated as a condition of stationary phase on the joint
sub-systems.
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An experimentalist manipulates the incident beam and records counts in a detector, i.e. has
access only to the scattered part of the state vector; thus one is obliged to integrate out the
crystal co-ordinates and treat the crystal as ‘part of the universe’. Such a situation, under the
Bragg constraint on acceptable state vectors, suggests that information maybe held in the phase
of the scattered state vectors. Berry’s influential paper of 1984 [7] highlighted the role of such
symmetry constraints in creating a class of observables, given by the gauge invariant phase of
the quantum mechanical amplitude, in addition to those given by the weight of its expectation
value. The initial arguments of Berry have been extended over the years in many directions [8],
of import to us here is the recognition that a closed path in parameter space may be realized not
only by an explicitly cyclic variation of a parametric Hamiltonian, as considered for example
in the Aharonov-Bohm effect [9] or in the (dynamic) Jahn—Teller distortion of polyatomic
molecules [10], but also by a physically enforced symmetry as in a coherent scattering event.

Early investigations on the spatial symmetry constraints of an infinite periodic lattice were
made by Zak and others [11, 12] introducing the concept of a non-cyclic, ‘open path’ geometric
phase. In the following we investigate the role that the enforced symmetry of the coherent
scattering event may have on diffraction phenomena. A generalized co-ordinate, 3, is used
to parameterize the evolution of the scattering event. As g goes from g — fr, the basic
premise of coherent scattering is that the system state vector returns on itself, preserving phase
information. This critical assumption, which appears to be borne out by the analysis given and
its experimental verification (figure 5), may be cast as an open path geometric phase'?. It is
clear that the scattering interaction between probe and sample will modify both the phase and
relative weight of the state vectors. Whilst the renormalization is a second order perturbative
effect in the relative weighting coefficient, it appears as a first order correction to the phase. In
the absence of symmetry constraints, the first order (Berry) phase term, is often justly ignored
as it may be in situations where it amounts to a zero phase increment (modulo 2r). However,
under particular experimental conditions, it may present itself as a non-trivial modification.

Coherent diffraction is characterized by the conditions of (i) a stationary phase of the
scattering amplitude (since it is only in this case that contributions from different space—time
volumes add constructively) and (ii) that the system should be found in its initial state after
the event. The phase of the scattering process may be written as (V| H ;) = ae™'2¢ where
i, f refer to the initial and final states, respectively, H is the interaction Hamiltonian and
Ap = [Aky — qilaN — [AE, — w]t — [y, — y] is the total phase increment accumulated
in |W) over the coherent scattering space—time volume expressed in terms of the probe, (p),
and lattice, (1), contributions. The lattice period is a, N the number of correlated lattice
cells within the probe coherence volume along the direction ¢; and ¢ the coherence time of
the scattering. The stationary condition sets A = 0. Within Bragg’s semi-classical model
the invariance of the first two terms corresponds to the assumption of momentum and energy
conservation, respectively. The last term sums to zero since an isolated system cannot have
any overall phase dependency, i.e. the Berry phase increment of crystal is equal and opposite
to that of probe. The coherent return to the initial state may be expressed as a function
of the generalized co-ordinate 8. The scattering system goes from an initial state |¢(5;))
to a final state |¢(Br)) with the condition [p(Bf)) = S~ (B:)) where S expresses the
invariance, implicit in a coherent scattering event between initial and final states in the crystal,
ie. Hi(y) = S Hi(B)S.

For an infinitesimal change in scattering parameter the incremental change in |¢) is
calculated in perturbation theory as the weighted linear superposition of intermediate states.

10 The scattering event is a one-off rather than cyclic event; for this reason the ‘open path’ terminology is used. Despite
the common terminology, this article is not concerned with problem of a position variable in an infinite lattice which
is addressed in [11, 12].
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Figure 5. The anomalous displacement, D Q, of the antiferromagnetic wavevector as a function of
fwhm in URu;Sis, UPdyAlz and UO,, with temperature as an implicit parameter. The solid lines
of slope —1/2 are the predicted dependency of DQ on the fwhm. Note that for URu,Si,, in the
absence of LRO, the assignment of DQ = 0 at the base temperature of 10 K is arbitrary.

An implicit choice of gauge is made, corresponding with the perturbative additions being
orthogonal to the initial state,
(vIH'|¢)

@B+ AB)) ~ |p(B)) + |V(,3))7‘ AB
g; E,—Eslg

where |¢) and |v) are, respectively, the initial and intermediate crystal state vectors, H' is the
B derivative of H and explicit corrections involving normalization of states are temporarily
neglected!!. This parallel transport gauge, which leads to a local rotation of |¢) as a function

' The weighting coefficient correction to the virtual state is of second order whilst its phase rotation is of first order
in AB. On assumption that the infinitesimal phase correction is of similar magnitude in excited and initial states, the
major effects are taken care of by the global phase factor, exp(—iAy).
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of B, is incompatible with the global phase invariance over § demanded by the condition of
coherence and must be generalized [12]:

Zia (vIH'|¢)
lp(B+Ap)) ~e y[l¢(ﬂ)) + Z IV(ﬁ))ﬁ‘ Aﬁ}-
= v el

The phasing correction, which is applied uniformly to both the initial and virtual states, may
be identified as an infinitesimal Berry phase increment, Ay = i(¢|d¢/9d8)AB. In this way the
rotation of |¢) is corrected at each increment of B and, on completion with 8 = B, the state
vector returns to its initial condition. The total corrective phase increment, summed over the
space—time volume of the scattering event, yj, is passed to the probe through the condition of
stationary phase and appears, for the coherent elastic scattering process, as a momentum shift
in Bragg peak resonance condition.

The gauge corrected state vector which emerges is manifestly not normal-
ized. However, the change in weighting coefficient appears in second order,

%\/1 =D s |VIH|9)/(E, — E4)|>(AB)?, and hence is neglected at each infinitesimal

whilst the phase shift, Ay, which arises from the local state vector rotation occurring in
the second order of perturbation theory, manifests as a primary correction ~Ap.

The distinction between the canonical phase wavevector Q and kinematic wavevector
Qv must be maintained. Q is a property of the wavefunction, whilst Q,,, characterizes the
kinematic nature of the state. For a free particle Q,,, is identified with the kinetic momentum
and may be experimentally defined, for example, by the (macroscopic) geometrically
determined space—time flight path of the probe. Thus for the probe, where there is only a
contribution from the kinematic momentum, consistency demands,

Qprobe = Qmu~
For a periodic array Q,,, is identified with the mechanical lattice periodicity, i.e. the lattice
or crystal momentum, which gives rise to discrete Fourier components (quantization of
momentum in units of the reciprocal lattice vector) in coherent elastic scattering and yields,

qumple = Qlullice-

In the quantum approach a condition of stationary phase is set, mebe = qumple, which
finds its equivalent in the conservation of kinematic momentum, Q,,, = Qlatice- In this
light, given the constraints of periodicity on the lattice functions of state, a primary role
of a gauge invariant phase in the scattering process is not unexpected. In the presence of
a Berry phase vector Q = Qltice — 0¥ /0R and it remains to fix the relative sign of the
Berry phase vector, DQ = Jy/0R, with respect t0 Qlarice. We argue by analogy with a
charged particle in a magnetic field: as the scattering interaction proceeds, and the impulse of
momentum given by the probe propagates through the lattice, the system makes a best choice
of wavefunction to minimize the phase momentum increment over the scattering path. Thus,
to maintain a periodic gauge, the state vector appears to retard its phase by the corrective
increment Ay = i(¢|d¢/dB) AP at each step. This is consistent with the observation of a
negative gradient in all graphs of figure 5.1

Spatially and temporally there are bounds on the largest unit capable of maintaining a
coherent transition. Scattering, and with it phase accumulation, being arrested when the
integrated phase adjustment, y, approaches ~m at which point the coherence condition
necessary for diffraction is lost. For resonant x-ray scattering the time of coherence is to be

12 The parallel with Lenz’s law has been noted and a counter example has yet to be found; however, it is not known
if the relative opposition of phase is based in a general minimization principle.
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superior to the resonant lifetime of the intermediate state and spatially it is taken to comprise
N repeat units leading to the condition, DQ ~ 7/Na. At the same time, spatial limitation
of the coherent diffracting unit also breaks strict periodicity. This blurs the lattice momentum
exchange giving a contribution to the intrinsic width of the diffraction peak, Ag ~ 27 /Na,
from which one obtains the testable prediction, DQ ~ (y/2m)Ag. Comparison with the
experimental data is given in figure 5, where Aq is the measured full width half maximum of
the Bragg peak. As is seen, for UO,, UPd;Als and URu,Si, there is satisfactory agreement
with the predicted phase shift of y ~ 7, giving a slope of —1/2. However, whilst the slope
for the weak antiferromagnetic—superconductor URu,Si, is close to —1/2, it is evident that
quantitative agreement is lacking. In this compound, where the wavevector shift exists at
all measured temperatures below Ty, the setting of DQ = 0 in figures 4 and 5 is evidently
arbitrary. An offset of ~—2 x 1073 rlu is suggested by the experimental plot of figure 5 which
would, by smooth extrapolation in figure 4, suggest URu,Si, to remain in a dynamic state down
to significantly lower temperature. This inference may be of importance both in understanding
the anomalous low magnetic moment inferred from neutron diffraction and the formation of
the simultaneous antiferromagnetic—superconducting ground state [13].

In summary, we have presented data which evidences an asymmetric shift in magnetic
scattering wavevector from a broad series of compounds including metals and insulators,
which exhibit both continuous and discontinuous transitions. The unique aspect of these
experiments is to have the lattice serving as an in situ fiducial marker of essentially infinite
periodicity, i.e. QThompson = Qlatice site €nabling a differential measurement of the shift in
the magnetic response arising from the magnetic correlations of finite length scale having
Qmagnetic = Qo — DQ. This difference is perhaps most vivid in the example of USb, figure 2.
The shifts are in all instances small but lie well beyond the resolution limits of modern x-
ray diffractometers. Experiments are currently limited on account of intensity. Presumably,
with improved sources, other edges can be used; in particular the rare earths may give many
opportunities for experiments.

The understanding of the observed shifts in wavevector appears to require the consistent
treatment of terms formally beyond the first order perturbation theory of diffraction as
commonly employed. The current approach emphasizes the fundamental aspect of a
stationary phase in coherent Bragg scattering and points to an incompatibility of the symmetry
requirements of coherence with the parallel transport gauge of standard perturbation theory.
Thus Berry’s insight, that apparently second order renormalization effects may occur as a
primary phase correction in an experiment accessing only an isolated part of an extended
Hilbert space within which the vectors and operators are constrained by symmetry, appears to
be fundamental. In the quantum picture the Berry shift y appears as a corrective element in
the condition of stationary phase, translated into Bragg’s wave picture it corresponds to the
shift Q9 — Qo — DO with DQ = y/Na.
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